Genetic diversity associated with natural rubber quality in elite genotypes of the rubber tree

Author:

Sant’Anna Isabela de Castro,Gouvêa Ligia Regina Lima,Martins Maria Alice,Scaloppi Junior Erivaldo José,de Freitas Rogério Soares,Gonçalves Paulo de Souza

Abstract

AbstractThe objective of this study was to evaluate the genetic variability of natural rubber latex traits among 44 elite genotypes of the rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell. Arg.]. Multivariate analysis and machine learning techniques were used, targeting the selection of parents that demonstrate superior characters. We analyzed traits related to technological or physicochemical properties of natural rubber latex, such as Wallace plasticity (P0), the plasticity retention index [PRI (%)], Mooney viscosity (VR), ash percentage (Ash), acetone extract percentage (AE), and nitrogen percentage (N), to study genetic diversity. Multivariate [unweighted pair group method with arithmetic means (UPGMA) and Tocher)] and machine learning techniques [K-means and Kohonen’s self-organizing maps (SOMs)] were employed. The genotypes showed high genetic variability for some of the evaluated traits. The traits PRI, Ash, and PO contributed the most to genetic diversity. The genotypes were classified into six clusters by the UPGMA method, and the results were consistent with the Tocher, K-means and SOM results. PRI can be used to improve the industrial potential of clones. The clones IAC 418 and PB 326 were the most divergent, followed by IAC 404 and IAC 56. These genotypes and others from the IAC 500 and 400 series could be used to start a breeding program. These combinations offer greater heterotic potential than the others, which can be used to improve components of rubber latex quality. Thus, it is important to consider the quality of rubber latex in the early stage of breeding programs.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3