An efficient breast cancer classification model using bilateral filtering and fuzzy convolutional neural network

Author:

Hayum A. Abdul,Jaya J.,Sivakumar R.,Paulchamy B.

Abstract

AbstractBC (Breast cancer) is the second most common reason for women to die from cancer. Recent workintroduced a model for BC classifications where input breast images were pre-processed using median filters for reducing noises. Weighed KMC (K-Means clustering) is used to segment the ROI (Region of Interest) after the input image has been cleaned of noise. Block-based CDF (Centre Distance Function) and CDTM (Diagonal Texture Matrix)-based texture and shape descriptors are utilized for feature extraction. The collected features are reduced in counts using KPCA (Kernel Principal Component Analysis). The appropriate feature selection is computed using ICSO (Improved Cuckoo Search Optimization). The MRNN ((Modified Recurrent Neural Network)) values are then improved through optimization before being utilized to divide British Columbia into benign and malignant types. However, ICSO has many disadvantages, such as slow search speed and low convergence accuracy and training an MRNN is a completely tough task. To avoid those problems in this work preprocessing is done by bilateral filtering to remove the noise from the input image. Bilateral filter using linear Gaussian for smoothing. Contrast stretching is applied to improve the image quality. ROI segmentation is calculated based on MFCM (modified fuzzy C means) clustering. CDTM-based, CDF-based color histogram and shape description methods are applied for feature extraction. It summarizes two important pieces of information about an object such as the colors present in the image, and the relative proportion of each color in the given image. After the features are extracted, KPCA is used to reduce the size. Feature selection was performed using MCSO (Mutational Chicken Flock Optimization). Finally, BC detection and classification were performed using FCNN (Fuzzy Convolutional Neural Network) and its parameters were optimized using MCSO. The proposed model is evaluated for accuracy, recall, f-measure and accuracy. This work’s experimental results achieve high values of accuracy when compared to other existing models.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3