Author:
Abdollahi Seyyed Amirreza,Ranjbar Seyyed Faramarz,Razeghi Jahromi Dorsa
Abstract
AbstractThe biomass higher heating value (HHV) is an important thermal property that determines the amount of recoverable energy from agriculture byproducts. Precise laboratory measurement or accurate prediction of the HHV is essential for designing biomass conversion equipment. The current study combines feature selection scenarios and machine learning tools to establish a general model for estimating biomass HHV. Multiple linear regression and Pearson’s correlation coefficients justified that volatile matter, nitrogen, and oxygen content of biomass samples have a slight effect on the HHV and it is better to ignore them during the HHV modeling. Then, the prediction performance of random forest, multilayer and cascade feedforward neural networks, group method of data handling, and least-squares support vector regressor are compared to determine the intelligent estimator with the highest accuracy toward biomass HHV prediction. The ranking test shows that the multilayer perceptron neural network better predicts the HHV of 532 biomass samples than the other intelligent models. This model presents the outstanding absolute average relative error of 2.75% and 3.12% and regression coefficients of 0.9500 and 0.9418 in the learning and testing stages. The model performance is also superior to a recurrent neural network which was recently developed in the literature using the same databank.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献