Author:
Starikova Anna V.,Skopenkova Victoria V.,Polikarpova Anna V.,Reshetov Denis A.,Vassilieva Svetlana G.,Velyaev Oleg A.,Shmidt Anna A.,Savchenko Irina M.,Soldatov Vladislav O.,Egorova Tatiana V.,Bardina Maryana V.
Abstract
AbstractHigh expectations have been set on gene therapy with an AAV-delivered shortened version of dystrophin (µDys) for Duchenne muscular dystrophy (DMD), with several drug candidates currently undergoing clinical trials. Safety concerns with this therapeutic approach include the immune response to introduced dystrophin antigens observed in some DMD patients. Recent reports highlighted microutrophin (µUtrn) as a less immunogenic functional dystrophin substitute for gene therapy. In the current study, we created a human codon-optimized µUtrn which was subjected to side-by-side characterization with previously reported mouse and human µUtrn sequences after rAAV9 intramuscular injections in mdx mice. Long-term studies with systemic delivery of rAAV9-µUtrn demonstrated robust transgene expression in muscles, with localization to the sarcolemma, functional improvement of muscle performance, decreased creatine kinase levels, and lower immunogenicity as compared to µDys. An extensive toxicity study in wild-type rats did not reveal adverse changes associated with high-dose rAAV9 administration and human codon-optimized µUtrn overexpression. Furthermore, we verified that muscle-specific promoters MHCK7 and SPc5-12 drive a sufficient level of rAAV9-µUtrn expression to ameliorate the dystrophic phenotype in mdx mice. Our results provide ground for taking human codon-optimized µUtrn combined with muscle-specific promoters into clinical development as safe and efficient gene therapy for DMD.
Funder
The Foundation for Assistance to Small Innovative Enterprises in Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献