Volatility criteria and physicochemical properties of the promising dimethyl carbonate-gasoline blends

Author:

Amine Manal,Mohammed Hoda A.,Barakat Y

Abstract

AbstractIncreased need for energy resources, as well as the urgent need to improve the air quality, have prompted further research to meet these challenges. Great efforts have been directed to reducing the impact of exhaust emissions. In literature, the effect of blending dimethyl carbonate (DMC) into fuel on engine performance and exhaust emissions has been investigated, and the obtained results were promising in decreasing exhaust emissions. In the present work, the effect of blending DMC into gasoline on the physicochemical properties was studied. Six fuel blends were prepared by blending base gasoline (G) with (0%, 2%, 4%, 6%, 8%, and 10%) of DMC. The volatility characteristics of the fuel blends were studied, such as the distillation curve, vapor pressure, and driveability index. The octane rating and the physicochemical properties of the fuel blends were also studied. The results of the study showed interesting findings that encourage refineries to be interested in this promising fuel additive. The results showed that the addition of DMC to gasoline has a very slight effect on the volatility of gasoline, unlike other oxygenated additives like short chain alcohols which cause a significant increase in the fuel volatility. The addition of DMC to gasoline causes an insignificant increase in the vapor pressure as the addition of 10% of DMC increases the vapor pressure by 2 kPa while it does not affect the values of T10, T50, and T90, which are the most important parameters of the distillation curve. The results also showed that its addition causes a remarkable increase in the octane rating. The RON has increased for the G-10DMC blend by about 5 points making the DMC a promising octane booster.

Funder

Egyptian Petroleum Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3