Analyzing historical and future acute neurosurgical demand using an AI-enabled predictive dashboard

Author:

Pandit Anand S.,Jalal Arif H. B.,Toma Ahmed K.,Nachev Parashkev

Abstract

AbstractCharacterizing acute service demand is critical for neurosurgery and other emergency-dominant specialties in order to dynamically distribute resources and ensure timely access to treatment. This is especially important in the post-Covid 19 pandemic period, when healthcare centers are grappling with a record backlog of pending surgical procedures and rising acute referral numbers. Healthcare dashboards are well-placed to analyze this data, making key information about service and clinical outcomes available to staff in an easy-to-understand format. However, they typically provide insights based on inference rather than prediction, limiting their operational utility. We retrospectively analyzed and prospectively forecasted acute neurosurgical referrals, based on 10,033 referrals made to a large volume tertiary neurosciences center in London, U.K., from the start of the Covid-19 pandemic lockdown period until October 2021 through the use of a novel AI-enabled predictive dashboard. As anticipated, weekly referral volumes significantly increased during this period, largely owing to an increase in spinal referrals (p < 0.05). Applying validated time-series forecasting methods, we found that referrals were projected to increase beyond this time-point, with Prophet demonstrating the best test and computational performance. Using a mixed-methods approach, we determined that a dashboard approach was usable, feasible, and acceptable among key stakeholders.

Funder

Royal College of Surgeons of England

UCLH Biomedical Research Centre

Wellcome

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3