Identification of immune-related gene signature for predicting prognosis in uterine corpus endometrial carcinoma

Author:

Song Siyuan,Gu Haoqing,Li Jingzhan,Yang Peipei,Qi Xiafei,Liu Jiatong,Zhou Jiayu,Li Ye,Shu Peng

Abstract

AbstractThe objective of this study is to develop a gene signature related to the immune system that can be used to create personalized immunotherapy for Uterine Corpus Endometrial Carcinoma (UCEC). To classify the UCEC samples into different immune clusters, we utilized consensus clustering analysis. Additionally, immune correlation algorithms were employed to investigate the tumor immune microenvironment (TIME) in diverse clusters. To explore the biological function, we conducted GSEA analysis. Next, we developed a Nomogram by integrating a prognostic model with clinical features. Finally, we performed experimental validation in vitro to verify our prognostic risk model. In our study, we classified UCEC patients into three clusters using consensus clustering. We hypothesized that cluster C1 represents the immune inflammation type, cluster C2 represents the immune rejection type, and cluster C3 represents the immune desert type. The hub genes identified in the training cohort were primarily enriched in the MAPK signaling pathway, as well as the PD-L1 expression and PD-1 checkpoint pathway in cancer, all of which are immune-related pathways. Cluster C1 may be a more suitable for immunotherapy. The prognostic risk model showed a strong predictive ability. Our constructed risk model demonstrated a high level of accuracy in predicting the prognosis of UCEC, while also effectively reflecting the state of TIME.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3