Estimation and mapping of soil texture content based on unmanned aerial vehicle hyperspectral imaging

Author:

Song Qi,Gao Xiaohong,Song Yuting,Li Qiaoli,Chen Zhen,Li Runxiang,Zhang Hao,Cai Sangjie

Abstract

AbstractSoil texture is one of the important physical and natural properties of soil. Much of the current research focuses on soil texture monitoring using non-imaging geophysical spectrometers. However there are fewer studies utilizing unmanned aerial vehicle (UAV) hyperspectral data for soil texture monitoring. UAV mounted hyperspectral cameras can be used for quickly and accurately obtaining high-resolution spatial information of soil texture. A foundation has been laid for the realization of rapid soil texture surveys using unmanned airborne hyperspectral data without field sampling. This study selected three typical farmland areas in Huangshui Basin of Qinghai as the study area, and a total of 296 soil samples were collected. Data calibration of UAV spectra using laboratory spectra and field in situ spectra to explore the feasibility of applying laboratory soil texture models directly to field conditions. This results show that UAV hyperspectral imagery combined with machine learning can obtain a set of ideal processing methods. The pre-processing of the spectral data can obtain high accuracy of soil texture estimation and good mapping effect. The results of this study can provide effective technical support and decision-making assistance for future agricultural land planning on the Tibetan Plateau. The main innovation of this study is to establish a set of processing procedures and methods applicable to UAV hyperspectral imagery to provide data reference for monitoring soil texture in agricultural fields on the Tibetan Plateau.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3