Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers

Author:

Liu Wanhai,Wang Xiang,Liu Xingxia,Yu Changping,Fang Ming,Ye Wenhua

Abstract

AbstractThe validity of theoretical investigation on Rayleigh-Taylor instability (RTI) with nonlinearity is quite important, especially for the simplest and the commonest case of a pure single-mode RTI, while its previous explicit solution in weakly nonlinear scheme is found to have several defections. In this paper, this RTI is strictly solved by the method of the potential functions up to the third order at the weakly nonlinear stage for arbitrary Atwood numbers. It is found that the potential solution includes terms of both the stimulating and inhibiting RTI, while the terms of the decreasing RTI are omitted in the classical solution of the weakly nonlinear scheme, resulting in a big difference between these two results. For the pure single-mode cosine perturbation, comparisons among the classical result, the present potential result and numerical simulations, in which the two dimensional Euler equations are used, are carefully performed. Our result is in a better agreement with the numerical simulations than the classical one before the saturation time. To avoid the tedious expressions and improve a larger valid range of the solution, the method of the Taylor expansion is employed and the velocities of the bubble and spike are, respectively, obtained. Comparisons between the improved and the simulation results show that the improved theory can better predict the evolution of the interface from the linear to weakly nonlinear, even to later of the nonlinear stages.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3