Author:
Neupane Achal,Bulbul Izzet,Wang Ziyi,Lehman R. Michael,Nafziger Emerson,Marzano Shin-Yi Lee
Abstract
AbstractCrop rotation is an important management tactic that farmers use to manage crop production and reduce pests and diseases. Long-term crop rotations may select groups of microbes that form beneficial or pathogenic associations with the following crops, which could explain observed crop yield differences with different crop sequences. To test this hypothesis, we used two locations each with four long-term (12–14-year), replicated, rotation treatments: continuous corn (CCC), corn/corn/soybean (SCC), corn/soybean (CSC), and soybean/corn (SCS). Afterwards, soybean was planted, and yield and soil health indicators, bulk soil microbiome, and soybean root-associated microbiome were assessed. Soybean yields, as well as soil protein, and POXC as soil health indicators were higher following CCC than in the other three treatments at both locations. A bacterial taxon in family JG30-KF-AS9 was enriched in CCC, whereas Microvirga, Rhodomicrobium, and Micromonosporaceae were enriched in SCS. Several ascomycetes explain lowered yield as soybean pathogens in SCS. Surprisingly, Tumularia, Pyrenochaetopsis and Schizothecium were enriched in soybean roots after CCC, suggesting corn pathogens colonizing soybean roots as nonpathogens. Our finding of associations between soil health indicators related to microbiomes and soybean yield has wide-ranging implications, opening the possibility of manipulating microbiomes to improve crop yield potential.
Funder
Ministry of Agriculture and Forestry and Ministry of National Education of Republic of Turkey
SD-NREC
National Sclerotinia Initiative
Publisher
Springer Science and Business Media LLC
Reference92 articles.
1. Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).
2. Berzsenyi, Z., Győrffy, B. & Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 13, 225–244. https://doi.org/10.1016/S1161-0301(00)00076-9 (2000).
3. Körschens, M. The importance of long-term field experiments for soil science and environmental research: a review. Plant Soil Environ. 52, 1–8 (2006).
4. Zuber, S. M., Behnke, G., Nafziger, E. & Villamil, M. B. Crop rotation and tillage effects on soil physical and chemical properties in Illinois. Agron. J. 107, 971–978. https://doi.org/10.2134/agronj14.0465 (2015).
5. Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. National Soil Health Specialist, Soil Health Division, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Washington, D.C. (2019).
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献