Bimodal CNN for cardiovascular disease classification by co-training ECG grayscale images and scalograms

Author:

Yoon Taeyoung,Kang Daesung

Abstract

AbstractThis study aimed to develop a bimodal convolutional neural network (CNN) by co-training grayscale images and scalograms of ECG for cardiovascular disease classification. The bimodal CNN model was developed using a 12-lead ECG database collected from Chapman University and Shaoxing People's Hospital. The preprocessed database contains 10,588 ECG data and 11 heart rhythms labeled by a specialist physician. The preprocessed one-dimensional ECG signals were converted into two-dimensional grayscale images and scalograms, which are fed simultaneously to the bimodal CNN model as dual input images. The proposed model aims to improve the performance of CVDs classification by making use of ECG grayscale images and scalograms. The bimodal CNN model consists of two identical Inception-v3 backbone models, which were pre-trained on the ImageNet database. The proposed model was fine-tuned with 6780 dual-input images, validated with 1694 dual-input images, and tested on 2114 dual-input images. The bimodal CNN model using two identical Inception-v3 backbones achieved best AUC (0.992), accuracy (95.08%), sensitivity (0.942), precision (0.946) and F1-score (0.944) in lead II. Ensemble model of all leads obtained AUC (0.994), accuracy (95.74%), sensitivity (0.950), precision (0.953), and F1-score (0.952). The bimodal CNN model showed better diagnostic performance than logistic regression, XGBoost, LSTM, single CNN model training with grayscale images alone or with scalograms alone. The proposed bimodal CNN model would be of great help in diagnosing cardiovascular diseases.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3