Micro-architecture design exploration template for AutoML case study on SqueezeSEMAuto

Author:

Chantrapornchai Chantana,Kajkamhaeng Supasit,Romphet Phattharaphon

Abstract

AbstractConvolutional Neural Network (CNN) models have been commonly used primarily in image recognition tasks in the deep learning area. Finding the right architecture needs a lot of hand-tune experiments which are time-consuming. In this paper, we exploit an AutoML framework that adds to the exploration of the micro-architecture block and the multi-input option. The proposed adaption has been applied to SqueezeNet with SE blocks combined with the residual block combinations. The experiments assume three search strategies: Random, Hyperband, and Bayesian algorithms. Such combinations can lead to solutions with superior accuracy while the model size can be monitored. We demonstrate the application of the approach against benchmarks: CIFAR-10 and Tsinghua Facial Expression datasets. The searches allow the designer to find the architectures with better accuracy than the traditional architectures without hand-tune efforts. For example, CIFAR-10, leads to the SqueezeNet architecture using only 4 fire modules with 59% accuracy. When exploring SE block insertion, the model with good insertion points can lead to an accuracy of 78% while the traditional SqueezeNet can achieve an accuracy of around 50%. For other tasks, such as facial expression recognition, the proposed approach can lead up to an accuracy of 71% with the proper insertion of SE blocks, the appropriate number of fire modules, and adequate input merging, while the traditional model can achieve the accuracy under 20%.

Funder

Office of National Higher Education Science Research and Innovation Policy Council

National Research Council of Thailand, Thailand Research Fund

Kasetsart University Research and Development Institute

Faculty of Engineering, Kasetsart University

NVIDIA Hardware grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3