Low-cost and efficient prediction hardware for tabular data using tiny classifier circuits

Author:

Iordanou KonstantinosORCID,Atkinson Timothy,Ozer EmreORCID,Kufel Jedrzej,Aligada Grace,Biggs JohnORCID,Brown GavinORCID,Luján Mikel

Abstract

AbstractA typical machine learning development cycle maximizes performance during model training and then minimizes the memory and area footprint of the trained model for deployment on processing cores, graphics processing units, microcontrollers or custom hardware accelerators. However, this becomes increasingly difficult as machine learning models grow larger and more complex. Here we report a methodology for automatically generating predictor circuits for the classification of tabular data. The approach offers comparable prediction performance to conventional machine learning techniques as substantially fewer hardware resources and power are used. We use an evolutionary algorithm to search over the space of logic gates and automatically generate a classifier circuit with maximized training prediction accuracy, which consists of no more than 300 logic gates. When simulated as a silicon chip, our tiny classifiers use 8–18 times less area and 4–8 times less power than the best-performing machine learning baseline. When implemented as a low-cost chip on a flexible substrate, they occupy 10–75 times less area, consume 13–75 times less power and have 6 times better yield than the most hardware-efficient ML baseline.

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Arik, S. Ö. & Pfister, T. TabNet: attentive interpretable tabular learning. In Proc. AAAI Conference on Artificial Intelligence 35, 6679–6687 (2021).

2. Shwartz-Ziv, R. & Armon, A. Tabular data: deep learning is not all you need. Inf. Fusion 81, 84–90 (2022).

3. Popov, S., Morozov, S. & Babenko, A. Neural oblivious decision ensembles for deep learning on tabular data. Preprint at https://doi.org/10.48550/arXiv.1909.06312 (2019).

4. Kadra, A. et al. Well-tuned simple nets excel on tabular datasets. In Proc. Neural Information Processing Systems https://proceedings.neurips.cc/paper_files/paper/2021/file/c902b497eb972281fb5b4e206db38ee6-Paper.pdf (NIPS, 2021).

5. Zhang, S., Yao, L., Sun, A. & Tay, Y. Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52, 5 (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Custom-designed Atrial Fibrillation Detection Hardware on a Flexible Substrate;2024 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3