Abstract
AbstractThe dark-adapted human electroretinogram (ERG) response to a standard bright flash includes a negative-going a-wave followed by a positive-going b-wave that crosses the baseline. An electronegative waveform (or negative ERG) results when the b-wave is selectively reduced such that the ERG fails to cross the baseline following the a-wave. In the context of a normally sized a-wave, it indicates a site of retinal dysfunction occurring after phototransduction (commonly at the photoreceptor to bipolar cell synapse). This is an important finding. In genetic disease, the pattern of ERG abnormality can point to variants in a small group of genes (frequently those associated with congenital stationary night blindness and X-linked retinoschisis, but negative ERGs can also be seen in other conditions including syndromic disease). In acquired disease, there are numerous causes, but specific features may point to melanoma-associated retinopathy (MAR). In some cases, the visual symptoms precede the diagnosis of the melanoma and so the ERG findings can initiate investigations facilitating early detection and treatment. Negative ERGs can occur in other paraneoplastic conditions, and in a range of other diseases. This review will outline the physiological basis for the negative ERG, report prevalences in the literature from different cohorts, discuss the range of causes, displaying examples of a number of ERG phenotypes, highlight features of a clinical approach to patients, and briefly discuss further insights relating to current flows shaping the a-wave trough and from single-cell transcriptome analysis.
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献