Abstract
AbstractMorphological control with broad tunability is a primary goal for the synthesis of colloidal nanocrystals with unique physicochemical properties. Here we develop a robotic platform as a substitute for trial-and-error synthesis and labour-intensive characterization to achieve this goal. Gold nanocrystals (with strong visible-light absorption) and double-perovskite nanocrystals (with photoluminescence) are selected as typical proof-of-concept nanocrystals for this platform. An initial choice of key synthesis parameters was acquired through data mining of the literature. Automated synthesis and in situ characterization with further ex situ validation was then carried out and controllable synthesis of nanocrystals with the desired morphology was accomplished. To achieve morphology-oriented inverse design, correlations between the morphologies and structure-directing agents are identified by machine-learning models trained on a continuously expanded experimental database. Thus, the developed robotic platform with a data mining–synthesis–inverse design framework is promising in data-driven robotic synthesis of nanocrystals and beyond.
Publisher
Springer Science and Business Media LLC
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献