Publisher
Springer Science and Business Media LLC
Subject
Pediatrics, Perinatology and Child Health
Reference22 articles.
1. Ashton, J. J., Young, A., Johnson, M. J. & Beattie, R. M. Using machine learning to impact on long-term clinical care: principles, challenges, and practicalities. Pediatr Res. https://doi.org/10.1038/s41390-022-02194-6 (2022).
2. Baker, S. & Kandasamy, Y. Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review. Pediatr Res. 1–7. https://doi.org/10.1038/s41390-022-02120-w (2022).
3. Vijlbrief, D., Dudink, J., van Solinge W., et al. From computer to bedside, involving neonatologists in artificial intelligence models for neonatal medicine. Pediatr. Res. In Press.
4. Sullivan, B. A., Kausch, S. L. & Fairchild, K. D. Artificial and human intelligence for early identification of neonatal sepsis. Pediatr Res. https://doi.org/10.1038/s41390-022-02274-7 (2022).
5. Sitek, A. et al. Artificial intelligence in the diagnosis of necrotising enterocolitis in newborns. Pediatr Res. https://doi.org/10.1038/s41390-022-02322-2 (2022).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献