Development and child health in a world of synthetic chemicals

Author:

Wager Jessica L.,Thompson Jennifer A.

Abstract

Abstract Chemical pollution is one of today’s most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. Impact Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.

Publisher

Springer Science and Business Media LLC

Reference77 articles.

1. In historic move, UN declares healthy environment a human right. UNEP http://www.unep.org/news-and-stories/story/historic-move-un-declares-healthy-environment-human-right (2022).

2. Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

3. Landrigan, P. J. et al. Pollution and global health – an agenda for prevention. Environ. Health Perspect. 126, 084501 (2018).

4. Programme, U. N. E. The Evolving Chemicals Economy: Status and Trends Relevant for Sustainability - Global Chemicals Outlook II Part I. (2019).

5. Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3