Slow rewarming after hypothermia does not ameliorate white matter injury after hypoxia-ischemia in near-term fetal sheep

Author:

McDouall Alice,Zhou Kelly Q.,Davies Anthony,Wassink Guido,Jones Timothy L. M.,Bennet Laura,Gunn Alistair J.,Davidson Joanne O.

Abstract

Abstract Background The optimal rate to rewarm infants after therapeutic hypothermia is unclear. In this study we examined whether slow rewarming after 72 h of hypothermia would attenuate white matter injury. Methods Near-term fetal sheep received sham occlusion (n = 8) or cerebral ischemia for 30 min, followed by normothermia (n = 7) or hypothermia from 3–72 h, with either spontaneous fast rewarming (n = 8) within 1 h, or slow rewarming at ~0.5 °C/h (n = 8) over 10 h. Fetuses were euthanized 7 days later. Results Ischemia was associated with loss of total and mature oligodendrocytes, reduced expression of myelin proteins and induction of microglia and astrocytes, compared with sham controls (P < 0.05). Both hypothermia protocols were associated with a significant increase in numbers of total and mature oligodendrocytes, area fraction of myelin proteins and reduced numbers of microglia and astrocytes, compared with ischemia-normothermia (P < 0.05). There was no difference in the number of oligodendrocytes, microglia or astrocytes or expression of myelin proteins between fast and slow rewarming after hypothermia. Conclusion The rate of rewarming after a clinically relevant duration of hypothermia had no apparent effect on white matter protection by hypothermia after cerebral ischemia in near-term fetal sheep. Impact Persistent white matter injury is a major contributor to long-term disability after neonatal encephalopathy despite treatment with therapeutic hypothermia. The optimal rate to rewarm infants after therapeutic hypothermia is unclear; current protocols were developed on a precautionary basis. We now show that slow rewarming at 0.5 °C/h did not improve histological white matter injury compared with rapid spontaneous rewarming after a clinically established duration of hypothermia in near-term fetal sheep.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3