Augmented pain inhibition and higher integration of pain modulatory brain networks in women with self-injury behavior

Author:

Lalouni MariaORCID,Fust JensORCID,Bjureberg Johan,Kastrati GránitORCID,Fondberg Robin,Fransson Peter,Jayaram-Lindström NityaORCID,Kosek Eva,Hellner Clara,Jensen Karin B.ORCID

Abstract

AbstractIndividuals who engage in nonsuicidal self-injury (NSSI) have demonstrated insensitivity to pain compared with individuals without NSSI. Yet, the neural mechanisms behind this difference are unknown. The objective of the present study was to determine which aspects of the pain regulatory system that account for this decreased sensitivity to pain. In a case–control design, 81 women, aged 18–35 (mean [SD] age, 23.4 [3.9]), were included (41 with NSSI and 40 healthy controls). A quantitative sensory testing protocol, including heat pain thresholds, heat pain tolerance, pressure pain thresholds, conditioned pain modulation (assessing central down-regulation of pain), and temporal summation (assessing facilitation of pain signals) was used. Pain-evoked brain responses were assessed by means of fMRI scanning during thermal pain. NSSI participants showed a more effective central down-regulation of pain, compared to controls, assessed with conditioned pain modulation. The neural responses to painful stimulation revealed a stronger relation between nociceptive and pain modulatory brain regions in NSSI compared to controls. In line with previous studies, pressure and heat pain thresholds were higher in participants with NSSI, however, there were no correlations between pain outcomes and NSSI clinical characteristics. The augmented pain inhibition and higher involvement of pain modulatory brain networks in NSSI may represent a pain insensitive endophenotype associated with a greater risk for developing self-injurious behavior.

Funder

Vetenskapsrådet

StratNeuro Collaborative Grant

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3