The parasubthalamic nucleus refeeding ensemble delays feeding initiation and hastens water drinking

Author:

Dunning Jeffery L.ORCID,Lopez Catherine,Krull Colton,Kreifeldt Max,Angelo Maggie,Shu Leeann,Ramakrishnan CharuORCID,Deisseroth KarlORCID,Contet CandiceORCID

Abstract

AbstractThe parasubthalamic nucleus (PSTN) is activated by refeeding after food deprivation and several PSTN subpopulations have been shown to suppress feeding. However, no study to date directly addressed the role of PSTN neurons activated upon food access in the control of ensuing food consumption. Here we identify consumption latency as a sensitive behavioral indicator of PSTN activity, and show that, in hungry mice, the ensemble of refeeding-activated PSTN neurons drastically increases the latency to initiate refeeding with both familiar and a novel, familiar food, but does not control the amount of food consumed. In thirsty mice, this ensemble also delays sucrose consumption but accelerates water consumption, possibly reflecting anticipatory prandial thirst, with again no influence on the amount of fluid consumed. We next sought to identify which subpopulations of PSTN neurons might be driving these latency effects, using cell-type and pathway-specific chemogenetic manipulations. Our results suggest a prominent role of PSTN Tac1 neurons projecting to the central amygdala in the hindrance of feeding initiation. While PSTN Crh neurons also delay the latency of hungry mice to ingest familiar foods, they surprisingly promote the consumption of novel, palatable substances. Furthermore, PSTN Crh neurons projecting to the bed nucleus of the stria terminalis accelerate rehydration in thirsty mice. Our results demonstrate the key role of endogenous PSTN activity in the control of feeding and drinking initiation and delineate specific circuits mediating these effects, which may have relevance for eating disorders.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3