The human neuropsychiatric risk gene Drd2 is necessary for social functioning across evolutionary distant species

Author:

Ike Kevin G. O.ORCID,Lamers Sanne J. C.ORCID,Kaim SoumyaORCID,de Boer Sietse F.ORCID,Buwalda Bauke,Billeter Jean-Christophe,Kas Martien J. H.ORCID

Abstract

AbstractThe Drd2 gene, encoding the dopamine D2 receptor (D2R), was recently indicated as a potential target in the etiology of lowered sociability (i.e., social withdrawal), a symptom of several neuropsychiatric disorders such as Schizophrenia and Major Depression. Many animal species show social withdrawal in response to stimuli, including the vinegar fly Drosophila melanogaster and mice, which also share most human disease-related genes. Here we will test for causality between Drd2 and sociability and for its evolutionary conserved function in these two distant species, as well as assess its mechanism as a potential therapeutic target. During behavioral observations in groups of freely interacting D. melanogaster, Drd2 homologue mutant showed decreased social interactions and locomotor activity. After confirming Drd2’s social effects in flies, conditional transgenic mice lacking Drd2 in dopaminergic cells (autoreceptor KO) or in serotonergic cells (heteroreceptor KO) were studied in semi-natural environments, where they could freely interact. Autoreceptor KOs showed increased sociability, but reduced activity, while no overall effect of Drd2 deletion was observed in heteroreceptor KOs. To determine acute effects of D2R signaling on sociability, we also showed that a direct intervention with the D2R agonist Sumanirole decreased sociability in wild type mice, while the antagonist showed no effects. Using a computational ethological approach, this study demonstrates that Drd2 regulates sociability across evolutionary distant species, and that activation of the mammalian D2R autoreceptor, in particular, is necessary for social functioning.

Funder

Innovative Medicines Initiative

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3