Abstract
AbstractUrinary tract infections are one of the most common bacterial infections worldwide; however, increasing antimicrobial resistance in bacterial pathogens is making it challenging for clinicians to correctly prescribe patients appropriate antibiotics. In this study, we present four interpretable machine learning-based decision support algorithms for predicting antimicrobial resistance. Using electronic health record data from a large cohort of patients diagnosed with potentially complicated UTIs, we demonstrate high predictability of antibiotic resistance across four antibiotics – nitrofurantoin, co-trimoxazole, ciprofloxacin, and levofloxacin. We additionally demonstrate the generalizability of our methods on a separate cohort of patients with uncomplicated UTIs, demonstrating that machine learning-driven approaches can help alleviate the potential of administering non-susceptible treatments, facilitate rapid effective clinical interventions, and enable personalized treatment suggestions. Additionally, these techniques present the benefit of providing model interpretability, explaining the basis for generated predictions.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献