Reconfigurable MIMO-based self-powered battery-less light communication system

Author:

De Oliveira Filho Jose IltonORCID,Trichili Abderrahmen,Alkhazragi OmarORCID,Alouini Mohamed-Slim,Ooi Boon S.,Salama Khaled NabilORCID

Abstract

AbstractSimultaneous lightwave information and power transfer (SLIPT), co-existing with optical wireless communication, holds an enormous potential to provide continuous charging to remote Internet of Things (IoT) devices while ensuring connectivity. Combining SLIPT with an omnidirectional receiver, we can leverage a higher power budget while maintaining a stable connection, a major challenge for optical wireless communication systems. Here, we design a multiplexed SLIPT-based system comprising an array of photodetectors (PDs) arranged in a 3 × 3 configuration. The system enables decoding information from multiple light beams while simultaneously harvesting energy. The PDs can swiftly switch between photoconductive and photovoltaic modes to maximize information transfer rates and provide on-demand energy harvesting. Additionally, we investigated the ability to decode information and harvest energy with a particular quadrant set of PDs from the array, allowing beam tracking and spatial diversity. The design was explored in a smaller version for higher data rates and a bigger one for higher power harvesting. We report a self-powering device that can achieve a gross data rate of 25.7 Mbps from a single-input single-output (SISO) and an 85.2 Mbps net data rate in a multiple-input multiple-output (MIMO) configuration. Under a standard AMT1.5 illumination, the device can harvest up to 87.33 mW, around twice the power needed to maintain the entire system. Our work paves the way for deploying autonomous IoT devices in harsh environments and their potential use in space applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3