High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities

Author:

Mansha Shampy,Moitra Parikshit,Xu XuewuORCID,Mass Tobias W. W.,Veetil Rasna Maruthiyodan,Liang Xinan,Li Shi-QiangORCID,Paniagua-Domínguez RamónORCID,Kuznetsov Arseniy I.ORCID

Abstract

AbstractSpatial light modulators (SLMs) are the most relevant technology for dynamic wavefront manipulation. They find diverse applications ranging from novel displays to optical and quantum communications. Among commercial SLMs for phase modulation, Liquid Crystal on Silicon (LCoS) offers the smallest pixel size and, thus, the most precise phase mapping and largest field of view (FOV). Further pixel miniaturization, however, is not possible in these devices due to inter-pixel cross-talks, which follow from the high driving voltages needed to modulate the thick liquid crystal (LC) cells that are necessary for full phase control. Newly introduced metasurface-based SLMs provide means for pixel miniaturization by modulating the phase via resonance tuning. These devices, however, are intrinsically monochromatic, limiting their use in applications requiring multi-wavelength operation. Here, we introduce a novel design allowing small pixel and multi-spectral operation. Based on LC-tunable Fabry-Perot nanocavities engineered to support multiple resonances across the visible range (including red, green and blue wavelengths), our design provides continuous 2π phase modulation with high reflectance at each of the operating wavelengths. Experimentally, we realize a device with 96 pixels (~1 μm pitch) that can be individually addressed by electrical biases. Using it, we first demonstrate multi-spectral programmable beam steering with FOV~18° and absolute efficiencies exceeding 40%. Then, we reprogram the device to achieve multi-spectral lensing with tunable focal distance and efficiencies ~27%. Our design paves the way towards a new class of SLM for future applications in displays, optical computing and beyond.

Funder

Agency for Science, Technology and Research

National Research Foundation Singapore

Institution of Engineering and Technology

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3