Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices

Author:

Kwon Soonyang,Park Jangryul,Kim Kwangrak,Cho Yunje,Lee MyungjunORCID

Abstract

AbstractAs smaller structures are being increasingly adopted in the semiconductor industry, the performance of memory and logic devices is being continuously improved with innovative 3D integration schemes as well as shrinking and stacking strategies. Owing to the increasing complexity of the design architectures, optical metrology techniques including spectroscopic ellipsometry (SE) and reflectometry have been widely used for efficient process development and yield ramp-up due to the capability of 3D structure measurements. However, there has been an increasing demand for a significant reduction in the physical spot diameter used in the SE technique; the spot diameter should be at least 10 times smaller than the cell dimension (~30 × 40 μm2) of typical dynamic random-access memory to be able to measure in-cell critical dimension (CD) variations. To this end, this study demonstrates a novel spectrum measurement system that utilizes the microsphere-assisted super-resolution effect, achieving extremely small spot spectral metrology by reducing the spot diameter to ~210 nm, while maintaining a sufficiently high signal-to-noise ratio. In addition, a geometric model is introduced for the microsphere-based spectral metrology system that can calculate the virtual image plane magnification and depth of focus, providing the optimal distance between the objective lens, microsphere, and sample to achieve the best possible imaging quality. The proof of concept was fully verified through both simulations and experiments for various samples. Thus, owing to its ultra-small spot metrology capability, this technique has great potential for solving the current metrology challenge of monitoring in-cell CD variations in advanced logic and memory devices.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3