Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule

Author:

Xu Hongnan,Qin Yue,Hu GaoleiORCID,Tsang Hon KiORCID

Abstract

AbstractThe chip-scale integration of optical spectrometers may offer new opportunities for in situ bio-chemical analysis, remote sensing, and intelligent health care. The miniaturization of integrated spectrometers faces the challenge of an inherent trade-off between spectral resolutions and working bandwidths. Typically, a high resolution requires long optical paths, which in turn reduces the free-spectral range (FSR). In this paper, we propose and demonstrate a ground-breaking spectrometer design beyond the resolution-bandwidth limit. We tailor the dispersion of mode splitting in a photonic molecule to identify the spectral information at different FSRs. When tuning over a single FSR, each wavelength channel is encoded with a unique scanning trace, which enables the decorrelation over the whole bandwidth spanning multiple FSRs. Fourier analysis reveals that each left singular vector of the transmission matrix is mapped to a unique frequency component of the recorded output signal with a high sideband suppression ratio. Thus, unknown input spectra can be retrieved by solving a linear inverse problem with iterative optimizations. Experimental results demonstrate that this approach can resolve any arbitrary spectra with discrete, continuous, or hybrid features. An ultrahigh resolution of <40 pm is achieved throughout an ultrabroad bandwidth of >100 nm far exceeding the narrow FSR. An ultralarge wavelength-channel capacity of 2501 is supported by a single spatial channel within an ultrasmall footprint (≈60 × 60 μm2), which represents, to the best of our knowledge, the highest channel-to-footprint ratio (≈0.69 μm−2) and spectral-to-spatial ratio (>2501) ever demonstrated to date.

Funder

Innovation and Technology Fund

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3