Chaos Raman distributed optical fiber sensing

Author:

Wang Chenyi,Li Jian,Zhou Xinxin,Cheng Zijia,Qiao Lijun,Xue Xiaohui,Zhang Mingjiang

Abstract

AbstractThe physics principle of pulse flight positioning is the main theoretical bottleneck that restricts the spatial resolution of the existing Raman distributed optical fiber sensing scheme. Owing to the pulse width of tens of nanoseconds, the spatial resolution of the existing Raman distributed optical fiber sensing scheme with kilometer-level sensing distance is limited to the meter level, which seriously restricts the development of the optical time-domain reflection system. In this paper, a chaos laser is proposed in the context of the physical principle of the Raman scattering effect, and a novel theory of chaos Raman distributed optical fiber sensing scheme is presented. The scheme reveals the characteristics of chaos Raman scattering light excited by a chaotic signal on the sensing fiber. Further, the chaos time-domain compression demodulation mechanism between the temperature variation information and chaos correlation peak is demonstrated. Then, the position of the temperature variation signal is precisely located using the delay time of the chaos correlation peak combined with the chaos pulse flight time. Based on this novel optical sensing mechanism, an experiment with 10 cm spatial resolution and 1.4 km sensing distance was conducted, and the spatial resolution was found to be independent of the sensing distance. Within the limit of the existing spatial resolution theory, the spatial resolution of the proposed scheme is 50 times higher than that of the traditional scheme. The scheme also provides a new research direction for optical chaos and optical fiber sensing.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3