High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication

Author:

Kang Chun HongORCID,Dursun IbrahimORCID,Liu GuangyuORCID,Sinatra LutfanORCID,Sun XiaobinORCID,Kong Meiwei,Pan JunORCID,Maity ParthaORCID,Ooi Ee-Ning,Ng Tien KheeORCID,Mohammed Omar F.ORCID,Bakr Osman M.ORCID,Ooi Boon S.ORCID

Abstract

Abstract Optical wireless communication (OWC) using the ultra-broad spectrum of the visible-to-ultraviolet (UV) wavelength region remains a vital field of research for mitigating the saturated bandwidth of radio-frequency (RF) communication. However, the lack of an efficient UV photodetection methodology hinders the development of UV-based communication. The key technological impediment is related to the low UV-photon absorption in existing silicon photodetectors, which offer low-cost and mature platforms. To address this technology gap, we report a hybrid Si-based photodetection scheme by incorporating CsPbBr3 perovskite nanocrystals (NCs) with a high photoluminescence quantum yield (PLQY) and a fast photoluminescence (PL) decay time as a UV-to-visible colour-converting layer for high-speed solar-blind UV communication. The facile formation of drop-cast CsPbBr3 perovskite NCs leads to a high PLQY of up to ~73% and strong absorption in the UV region. With the addition of the NC layer, a nearly threefold improvement in the responsivity and an increase of ~25% in the external quantum efficiency (EQE) of the solar-blind region compared to a commercial silicon-based photodetector were observed. Moreover, time-resolved photoluminescence measurements demonstrated a decay time of 4.5 ns under a 372-nm UV excitation source, thus elucidating the potential of this layer as a fast colour-converting layer. A high data rate of up to 34 Mbps in solar-blind communication was achieved using the hybrid CsPbBr3–silicon photodetection scheme in conjunction with a 278-nm UVC light-emitting diode (LED). These findings demonstrate the feasibility of an integrated high-speed photoreceiver design of a composition-tuneable perovskite-based phosphor and a low-cost silicon-based photodetector for UV communication.

Funder

King Abdullah University of Science and Technology

King Abdulaziz City for Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3