Unsupervised full-color cellular image reconstruction through disordered optical fiber

Author:

Hu Xiaowen,Zhao JianORCID,Antonio-Lopez Jose Enrique,Correa Rodrigo Amezcua,Schülzgen Axel

Abstract

AbstractRecent years have witnessed the tremendous development of fusing fiber-optic imaging with supervised deep learning to enable high-quality imaging of hard-to-reach areas. Nevertheless, the supervised deep learning method imposes strict constraints on fiber-optic imaging systems, where the input objects and the fiber outputs have to be collected in pairs. To unleash the full potential of fiber-optic imaging, unsupervised image reconstruction is in demand. Unfortunately, neither optical fiber bundles nor multimode fibers can achieve a point-to-point transmission of the object with a high sampling density, as is a prerequisite for unsupervised image reconstruction. The recently proposed disordered fibers offer a new solution based on the transverse Anderson localization. Here, we demonstrate unsupervised full-color imaging with a cellular resolution through a meter-long disordered fiber in both transmission and reflection modes. The unsupervised image reconstruction consists of two stages. In the first stage, we perform a pixel-wise standardization on the fiber outputs using the statistics of the objects. In the second stage, we recover the fine details of the reconstructions through a generative adversarial network. Unsupervised image reconstruction does not need paired images, enabling a much more flexible calibration under various conditions. Our new solution achieves full-color high-fidelity cell imaging within a working distance of at least 4 mm by only collecting the fiber outputs after an initial calibration. High imaging robustness is also demonstrated when the disordered fiber is bent with a central angle of 60°. Moreover, the cross-domain generality on unseen objects is shown to be enhanced with a diversified object set.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3