Abstract
AbstractThe goal of spectral imaging is to capture the spectral signature of a target. Traditional scanning method for spectral imaging suffers from large system volume and low image acquisition speed for large scenes. In contrast, computational spectral imaging methods have resorted to computation power for reduced system volume, but still endure long computation time for iterative spectral reconstructions. Recently, deep learning techniques are introduced into computational spectral imaging, witnessing fast reconstruction speed, great reconstruction quality, and the potential to drastically reduce the system volume. In this article, we review state-of-the-art deep-learning-empowered computational spectral imaging methods. They are further divided into amplitude-coded, phase-coded, and wavelength-coded methods, based on different light properties used for encoding. To boost future researches, we’ve also organized publicly available spectral datasets.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献