Abstract
AbstractWhite organic light-emitting diodes (WOLEDs) is a new generation of lighting technology and has stimulated wide-ranging studies. Despite the advantage of simple device structure, single-emitting-layer WOLEDs (SEL-WOLEDs) still face the challenges of difficult material screening and fine energy level regulation. Herein, we report efficient SEL-WOLEDs with a sky-blue emitting cerium(III) complex Ce-TBO2Et and an orange-red emitting europium(II) complex Eu(Tp2Et)2 as the emitters, showing a maximum external quantum efficiency of 15.9% and Commission Internationale de l’Eclairage coordinates of (0.33, 0.39) at various luminances. Most importantly, the electroluminescence mechanism of direct hole capture and hindered energy transfer between the two emitters facilitate a manageable weight doping concentration of 5% for Eu(Tp2Et)2, avoiding the low concentration (<1%) of the low-energy emitter in typical SEL-WOLEDs. Our results indicate that d-f transition emitters may circumvent fine energy level regulation and provide development potential for SEL-WOLEDs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献