Abstract
AbstractHerbicide-resistant weeds pose a substantial threat to global food security. Perennial weed species are particularly troublesome. Such perennials as Sorghum halepense spread quickly and are difficult to manage due to their ability to reproduce sexually via seeds and asexually through rhizomes. Our theoretical study of S. halepense incorporates this complex life cycle with control measures of herbicide application and tillage. Rooted in the biology and experimental data of S. halepense, our population-based model predicts population dynamics and target-site resistance evolution in this perennial weed. We found that the resistance cost determines the standing genetic variation for herbicide resistance. The sexual phase of the life cycle, including self-pollination and seed bank dynamics, contributes substantially to the persistence and rapid adaptation of S. halepense. While self-pollination accelerates target-site resistance evolution, seed banks considerably increase the probability of escape from control strategies and maintain genetic variation. Combining tillage and herbicide application effectively reduces weed densities and the risk of control failure without delaying resistance adaptation. We also show how mixtures of different herbicide classes are superior to rotations and mono-treatment in controlling perennial weeds and resistance evolution. Thus, by integrating experimental data and agronomic views, our theoretical study synergistically contributes to understanding and tackling the global threat to food security from resistant weeds.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Klein, P. & Smith, C. M. Invasive Johnsongrass, a threat to native grasslands and agriculture. Biologia 76, 413–420 (2021).
2. Holm, L. G., Plucknett, D. L., Pancho, J. V. & Herberger, J. P. The World’s Worst Weeds: Distribution and Biology (East-West Center, Univ. Press Hawaii, 1977).
3. Schwinning, S., Meckel, H., Reichmann, L. G., Polley, H. W. & Fay, P. A. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition. PLoS ONE 12, e0176042 (2017).
4. Warwick, S. I. & Black, L. The biology of Canadian weeds. 61. Sorghum halepense (L.) Pers. Can. J. Plant Sci. 63, 997–1014 (1983).
5. Peerzada, A. M. et al. Eco-biology, impact, and management of Sorghum halepense (L.) Pers. Biol. Invasions 25, 955–973 (2023).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献