Widely conserved AHL transcription factors are essential for NCR gene expression and nodule development in Medicago

Author:

Zhang SenleiORCID,Wang TingORCID,Lima Rui M.,Pettkó-Szandtner Aladár,Kereszt Attila,Downie J. AllanORCID,Kondorosi EvaORCID

Abstract

AbstractSymbiotic nitrogen fixation by Rhizobium bacteria in the cells of legume root nodules alleviates the need for nitrogen fertilizers. Nitrogen fixation requires the endosymbionts to differentiate into bacteroids which can be reversible or terminal. The latter is controlled by the plant, it is more beneficial and has evolved in multiple clades of the Leguminosae family. The plant effectors of terminal differentiation in inverted repeat-lacking clade legumes (IRLC) are nodule-specific cysteine-rich (NCR) peptides, which are absent in legumes such as soybean where there is no terminal differentiation of rhizobia. It was assumed that NCRs co-evolved with specific transcription factors, but our work demonstrates that expression of NCR genes does not require NCR-specific transcription factors. Introduction of the Medicago truncatula NCR169 gene under its own promoter into soybean roots resulted in its nodule-specific expression, leading to bacteroid changes associated with terminal differentiation. We identified two AT-Hook Motif Nuclear Localized (AHL) transcription factors from both M. truncatula and soybean nodules that bound to AT-rich sequences in the NCR169 promoter inducing its expression. Whereas mutation of NCR169 arrested bacteroid development at a late stage, the absence of MtAHL1 or MtAHL2 completely blocked bacteroid differentiation indicating that they also regulate other NCR genes required for the development of nitrogen-fixing nodules. Regulation of NCRs by orthologous transcription factors in non-IRLC legumes opens up the possibility of increasing the efficiency of nitrogen fixation in legumes lacking NCRs.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3