Mediated interactions between Fermi polarons and the role of impurity quantum statistics

Author:

Baroni CosettaORCID,Huang Bo,Fritsche IsabellaORCID,Dobler Erich,Anich Gregor,Kirilov Emil,Grimm RudolfORCID,Bastarrachea-Magnani Miguel A.ORCID,Massignan PietroORCID,Bruun Georg M.ORCID

Abstract

AbstractThe notion of quasi-particles is essential for understanding the behaviour of complex many-body systems. A prototypical example of a quasi-particle is a polaron, formed by an impurity strongly interacting with a surrounding medium. Fermi polarons, created in a Fermi sea, provide a paradigmatic realization of this concept. Importantly, such quasi-particles interact with each other via the modulation of the medium. However, although quantum simulation experiments with ultracold atoms have substantially improved our understanding of individual polarons, the detection of their interactions has so far remained elusive. Here we report the observation of mediated interactions between Fermi polarons consisting of K impurities embedded in a Fermi sea of Li atoms. Our results confirm two predictions of Landau’s Fermi-liquid theory: the shift in polaron energy due to mediated interactions, which is linear in the concentration of impurities; and its sign inversion with impurity quantum statistics. For weak-to-moderate interactions between the impurities and the medium, our results agree with the static predictions of Fermi-liquid theory. For stronger impurity–medium interactions, we show that the observed behaviour at negative energies can be explained by a more refined many-body treatment including retardation and dressed molecule formation.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3