Abstract
AbstractHerein we computationally explore the modulation of the release kinetics of an encapsulated guest molecule from the cucurbit[7]uril (CB7) cavity by ligands binding to the host portal. We uncovered a correlation between the ligand-binding affinity with CB7 and the guest residence time, allowing us to rapidly predict the release kinetics through straightforward energy minimization calculations. These high-throughput predictions in turn enable a Monte-Carlo Tree Search (MCTS) to de novo design a series of cap-shaped ligand molecules with large binding affinities and boosting guest residence times by up to 7 orders of magnitude. Notably, halogenated aromatic compounds emerge as top-ranking ligands. Detailed modeling suggests the presence of halogen-bonding between the ligands and the CB7 portal. Meanwhile, the binding of top-ranked ligands is supported by 1H NMR and 2D DOSY-NMR. Our findings open up possibilities in gating of molecular transport through a nanoscale cavity with potential applications in nanopore technology and controlled drug release.
Funder
RCUK | Engineering and Physical Sciences Research Council
Leverhulme Trust
Agency for Science, Technology and Research
A*STAR | Institute of Materials Research and Engineering
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献