Abstract
AbstractWe discuss the role of atomic coordination in dictating the vibrational characteristics and thermal conductivity in amorphous carbon. Our systematic atomistic simulations on amorphous carbon structures at varying mass densities show the significant role played by the ratio of sp2 to sp3 hybridized bonds in dictating the contributions from propagating (phonon-like) and non-propagating vibrational modes and their influence on the overall thermal conductivities of the structures. Specifically, our results show that as the concentration of sp3-bonded carbon atoms increases, the thermal conductivity can be increased by four fold, which is attributed to enhanced contributions from propagating modes in these amorphous structures. Our results shed more light into the role of atomic coordination on dictating heat transfer mechanisms in amorphous materials, and also provide a deeper understanding of the ability to tune the thermal conductivity of amorphous carbon structures through the control of the local atomic coordination.
Funder
United States Department of Defense | United States Navy | Office of Naval Research
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献