A generative deep learning framework for inverse design of compositionally complex bulk metallic glasses

Author:

Zhou ZiqingORCID,Shang Yinghui,Liu XiaodiORCID,Yang YongORCID

Abstract

AbstractThe design of bulk metallic glasses (BMGs) via machine learning (ML) has been a topic of active research recently. However, the prior ML models were mostly built upon supervised learning algorithms with human inputs to navigate the high dimensional compositional space, which becomes inefficient with the increasing compositional complexity in BMGs. Here, we develop a generative deep-learning framework to directly generate compositionally complex BMGs, such as high entropy BMGs. Our framework is built on the unsupervised Generative Adversarial Network (GAN) algorithm for data generation and the supervised Boosted Trees algorithm for data evaluation. We studied systematically the confounding effect of various data descriptors and the literature data on the effectiveness of our framework both numerically and experimentally. Most importantly, we demonstrate that our generative deep learning framework is capable of producing composition-property mappings, therefore paving the way for the inverse design of BMGs.

Funder

Research Grants Council, University Grants Committee

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3