Abstract
AbstractMaterials innovation calls for an integrated framework combining physics-based modelling and data-driven informatics. A dislocation-based constitutive model accounting for both transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) was built to interpret the mechanical characteristics of metastable titanium alloys. Particular attention was placed on quantitatively understanding the composition-sensitive phase stability and its influence on the underlying deformation mechanism. For this purpose, a pseudoelastic force balance incorporating thermodynamics and micromechanics was applied to calculate the energy landscapes of β → α″ martensitic transformation, {332}〈113〉 twinning and dislocation slip. Extensive material data were probed, computed and fed to the model. Our results revealed that TRIP and TWIP may operate simultaneously because of the presence of a noticeably overlapped energy domain, and confirmed {332}〈113〉 twinning is an energetically favourable deformation mechanism. The model validation further unveiled that the activation of β → α″ transition remarkably enhances the strain-hardening and plasticity, even though the dynamically formed α″ volume fraction is much less than that of deformation twinning. Our work suggests that the synchronised physical metallurgy and data-driven strategy allows to identify the compositional scenarios for developing high-performance engineering alloys.
Funder
Solid Mechanics University Technology Centre at the University of Oxford funded by Rolls-Royce plc.
Vetenskapsrådet
UK Royal Academy of Engineering Research Chair
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献