Abstract
AbstractThe Hammett equation is commonly used to theoretically depict the remote electronic effects of substituents on catalytic activities of metal nodes of metal-organic frameworks (MOFs). However, the application of the theory to MOF catalysts usually encounters problems because it relies heavily on empirical parameters with unknown transferability. To develop an alternative prediction theory, the linker orbital energy model has been proposed by density functional theory calculations. The model provides a simple method to approximately depict the remote electronic substituent effects on catalytic activities of metal nodes of MOFs, and its general applicability to MOFs is supported by extensively revisiting the structure-activity relationships reported in the literatures. The model can be used to design catalytic activity of metal nodes of MOFs by engineering the electronic properties of linkers and substituents.
Funder
National Natural Science Foundation of China
Program for International S&T Cooperation Projects of the Ministry of Science and Technology of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献