Learning excited states from ground states by using an artificial neural network

Author:

Kiyohara ShinORCID,Tsubaki Masashi,Mizoguchi TeruyasuORCID

Abstract

AbstractExcited states are different quantum states from their ground states, and spectroscopy methods that can assess excited states are widely used in materials characterization. Understanding the spectra reflecting excited states is thus of great importance for materials science. However, understanding such spectra remains difficult because excited states have usually different atomic or electronic configurations from their corresponding ground states. If excited states could be predicted from ground states, the knowledge of the excited states would be improved. Here, we used an artificial neural network to predict the excited states of the core-electron absorption spectra from their ground states. Consequently, our model correctly learned and predicted the excited states from their ground states, providing several thousand times computational efficiency. Furthermore, it showed excellent transferability to other materials. Also, we found two physical insights about excited states: core-hole effects of amorphous silicon oxides are stronger than those of crystalline silicon oxides, and the excited-ground states relationships of some metal oxides are similar to those of the silicon oxides, which could not be obtained by conventional spectral simulation nor found until using machine leaning.

Funder

MEXT | JST | Precursory Research for Embryonic Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3