Abstract
AbstractRecently, room temperature superconductivity was measured in a carbonaceous sulfur hydride material whose identity remains unknown. Herein, first-principles calculations are performed to provide a chemical basis for structural candidates derived by doping H3S with low levels of carbon. Pressure stabilizes unusual bonding configurations about the carbon atoms, which can be six-fold coordinated as CH6 entities within the cubic H3S framework, or four-fold coordinated as methane intercalated into the H-S lattice, with or without an additional hydrogen in the framework. The doping breaks degenerate bands, lowering the density of states at the Fermi level (NF), and localizing electrons in C-H bonds. Low levels of CH4 doping do not increase NF to values as high as those calculated for $$Im\bar{3}m$$
I
m
3
¯
m
-H3S, but they can yield a larger logarithmic average phonon frequency, and an electron–phonon coupling parameter comparable to that of R3m-H3S. The implications of carbon doping on the superconducting properties are discussed.
Funder
NSF | Directorate for Mathematical and Physical Sciences
U.S. Department of Energy
DOE | NNSA | Office of Defense Nuclear Nonproliferation
NSF | Directorate for Mathematical & Physical Sciences | Division of Physics
NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献