Dilute carbon in H3S under pressure

Author:

Wang XiaoyuORCID,Bi Tiange,Hilleke Katerina P.ORCID,Lamichhane Anmol,Hemley Russell J.ORCID,Zurek EvaORCID

Abstract

AbstractRecently, room temperature superconductivity was measured in a carbonaceous sulfur hydride material whose identity remains unknown. Herein, first-principles calculations are performed to provide a chemical basis for structural candidates derived by doping H3S with low levels of carbon. Pressure stabilizes unusual bonding configurations about the carbon atoms, which can be six-fold coordinated as CH6 entities within the cubic H3S framework, or four-fold coordinated as methane intercalated into the H-S lattice, with or without an additional hydrogen in the framework. The doping breaks degenerate bands, lowering the density of states at the Fermi level (NF), and localizing electrons in C-H bonds. Low levels of CH4 doping do not increase NF to values as high as those calculated for $$Im\bar{3}m$$ I m 3 ¯ m -H3S, but they can yield a larger logarithmic average phonon frequency, and an electron–phonon coupling parameter comparable to that of R3m-H3S. The implications of carbon doping on the superconducting properties are discussed.

Funder

NSF | Directorate for Mathematical and Physical Sciences

U.S. Department of Energy

DOE | NNSA | Office of Defense Nuclear Nonproliferation

NSF | Directorate for Mathematical & Physical Sciences | Division of Physics

NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3