Machine learning assisted derivation of minimal low-energy models for metallic magnets

Author:

Sharma VikramORCID,Wang ZhentaoORCID,Batista Cristian D.ORCID

Abstract

AbstractWe consider the problem of extracting a low-energy spin Hamiltonian from a triangular Kondo Lattice Model (KLM). The non-analytic dependence of the effective spin-spin interactions on the Kondo exchange excludes the use of perturbation theory beyond the second order. We then introduce a Machine Learning (ML) assisted protocol to extract effective two- and four-spin interactions. The resulting spin model reproduces the phase diagram of the original KLM as a function of magnetic field and single-ion anisotropy and reveals the effective four-spin interactions that stabilize the field-induced skyrmion crystal phase. Moreover, this model enables the computation of static and dynamical properties with a much lower numerical cost relative to the original KLM. A comparison of the dynamical spin structure factor in the fully polarized phase computed with both models reveals a good agreement for the magnon dispersion even though this information was not included in the training data set.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3