Validating neural networks for spectroscopic classification on a universal synthetic dataset

Author:

Schuetzke JanORCID,Szymanski Nathan J.ORCID,Reischl MarkusORCID

Abstract

AbstractTo aid the development of machine learning models for automated spectroscopic data classification, we created a universal synthetic dataset for the validation of their performance. The dataset mimics the characteristic appearance of experimental measurements from techniques such as X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy among others. We applied eight neural network architectures to classify artificial spectra, evaluating their ability to handle common experimental artifacts. While all models achieved over 98% accuracy on the synthetic dataset, misclassifications occurred when spectra had overlapping peaks or intensities. We found that non-linear activation functions, specifically ReLU in the fully-connected layers, were crucial for distinguishing between these classes, while adding more sophisticated components, such as residual blocks or normalization layers, provided no performance benefit. Based on these findings, we summarize key design principles for neural networks in spectroscopic data classification and publicly share all scripts used in this study.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3