Parametric simulation of electron backscatter diffraction patterns through generative models

Author:

Ding Zihao,De Graef MarcORCID

Abstract

AbstractRecently, discriminative machine learning models have been widely used to predict various attributes from Electron Backscatter Diffraction (EBSD) patterns. However, there has never been any generative model developed for EBSD pattern simulation. On one hand, the training of generative models is much harder than that of discriminative ones; On the other hand, numerous variables affecting EBSD pattern formation make the input space high-dimensional and its relationship with the distribution of backscattered electrons complicated. In this study, we propose a framework (EBSD-CVAE/GAN) with great flexibility and scalability to realize parametric simulation of EBSD patterns. Compared with the frequently used forward model, EBSD-CVAE/GAN can take variables more than just orientation and generate corresponding EBSD patterns in a single run. The accuracy and quality of generated patterns are systematically evaluated. The model does not only summarize a distribution of backscattered electrons at a higher level, but also mitigates data scarcity in this field.

Funder

United States Department of Defense | United States Navy | ONR | Office of Naval Research Global

National Science Foundation

same funding sources as corresponding author

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3