A dynamic Bayesian optimized active recommender system for curiosity-driven partially Human-in-the-loop automated experiments

Author:

Biswas ArpanORCID,Liu Yongtao,Creange Nicole,Liu Yu-Chen,Jesse Stephen,Yang Jan-Chi,Kalinin Sergei V.ORCID,Ziatdinov Maxim A.ORCID,Vasudevan Rama K.ORCID

Abstract

AbstractOptimization of experimental materials synthesis and characterization through active learning methods has been growing over the last decade, with examples ranging from measurements of diffraction on combinatorial alloys at synchrotrons, to searches through chemical space with automated synthesis robots for perovskites. In virtually all cases, the target property of interest for optimization is defined a priori with the ability to shift the trajectory of the optimization based on human-identified findings during the experiment is lacking. Thus, to highlight the best of both human operators and AI-driven experiments, here we present the development of a human–AI collaborated experimental workflow, via a Bayesian optimized active recommender system (BOARS), to shape targets on the fly with human real-time feedback. Here, the human guidance overpowers AI at early iteration when prior knowledge (uncertainty) is minimal (higher), while the AI overpowers the human during later iterations to accelerate the process with the human-assessed goal. We showcase examples of this framework applied to pre-acquired piezoresponse force spectroscopy of a ferroelectric thin film, and in real-time on an atomic force microscope, with human assessment to find symmetric hysteresis loops. It is found that such features appear more affected by subsurface defects than the local domain structure. This work shows the utility of human–AI approaches for curiosity driven exploration of systems across experimental domains.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3