NSGAN: a non-dominant sorting optimisation-based generative adversarial design framework for alloy discovery

Author:

Li Z.,Birbilis N.ORCID

Abstract

AbstractThe design and discovery of new materials is fundamental to advancing scientific and technological innovation. The recent emergence of the materials genome concept holds great promise in revolutionising materials science by enabling the systematic utilisation of data for efficient prediction and optimisation of ‘superior’ materials. However, the materials genome approach can be stymied by the vast complexity of design spaces, which often demand substantial computational resources and sophisticated data processing capabilities. To address these challenges, this work introduces a generative design framework called the non-dominant sorting optimisation-based generative adversarial networks (NSGAN). Capitalising on the synergies of genetic algorithms (GA) and generative adversarial networks (GANs), NSGAN provides a robust and efficient approach for tackling high-dimensional multi-objective optimisation design problems. To validate the efficacy of the proposed framework, we applied the model to a comprehensive dataset of aluminium alloys. Additionally, an online tool was created as a supplementary resource, offering a brief introduction to this innovative method for the wider scientific community. This study explores the potential of a predictive and data-driven approach in material design, indicating a promising pathway for widespread applications in the field of materials science.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3