An automated predictor for identifying transition states in solids

Author:

Yin Ketao,Gao Pengyue,Shao Xuecheng,Gao Bo,Liu HanyuORCID,Lv Jian,Tse John S.,Wang Yanchao,Ma Yanming

Abstract

AbstractThe minimum energy path (MEP) and transition state are two key parameters in the investigation of the mechanisms of chemical reactions and structural phase transformations. However, determination of transition paths in solids is challenging. Here, we present an evolutionary method to search for the lowest energy path and the transition state for pressure-induced structural transformations in solids without any user input or prior knowledge of possible paths. Instead, the initial paths are chosen stochastically by connecting randomly selected atoms from the initial to final structure. The MEP of these trials paths were computed and ranked in order of their energies. The matrix particle swarm optimization algorithm is then used to generate improved transition paths. The procedure is repeated until the lowest energy MEP is found. This method is validated by reproducing results of several known systems. The new method also successfully located the MEP for the direct low-temperature pressure induced transformation of face centered-cubic (FCC) silicon to the simple hexagonal(sh) phase and FCC lithium to a complex body centered-cubic cI16 high-pressure phase. The proposed method provides a convenient, robust, and reliable approach to identify the MEP of phase transformations. The method is general and applicable to a variety of problems requiring the location of the transition state.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3