Abstract
AbstractIn this paper, we demonstrate an application of the Transformer self-attention mechanism in the context of materials science. Our network, the Compositionally Restricted Attention-Based network (), explores the area of structure-agnostic materials property predictions when only a chemical formula is provided. Our results show that ’s performance matches or exceeds current best-practice methods on nearly all of 28 total benchmark datasets. We also demonstrate how ’s architecture lends itself towards model interpretability by showing different visualization approaches that are made possible by its design. We feel confident that and its attention-based framework will be of keen interest to future materials informatics researchers.
Funder
Deutscher Akademischer Austauschdienst
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献