Abstract
AbstractMendel’s First Law requires explanation because of the possibility of ‘meiotic drivers’, genes that distort fair segregation for selfish gain. The suppression of drive, and the restoration of fair segregation, is often attributed to genes at loci unlinked to the drive locus—such genes cannot benefit from drive but do suffer its associated fitness costs. However, selection can also favour suppressors at loci linked to the drive locus, raising the question of whether suppression of drive usually comes from linked or unlinked loci. Here, I study linked and unlinked suppression in a two-locus model with initial stable polymorphism at the drive locus. I find that the invasion rate of suppressors is a decreasing function of the recombination fraction between the drive and suppressor loci. Surprisingly, the relative likelihood of unlinked vs. linked suppression increases with the strength of drive and is insensitive to the fitness costs of the driver allele. I find that the chromosomal position of the driver influences how rapidly it is suppressed, with a driver in the middle of a chromosome suppressed more rapidly than a driver near the tip. When drive is strong, only a small number of chromosomes are required for suppression usually to derive from unlinked loci. In contrast, when drive is weak, and especially when suppressor alleles are associated with fitness costs, suppression will usually come from linked loci unless the genome comprises many chromosomes.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Branco Weiss Fellowship
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献