What Darwin could not see: island formation and historical sea levels shape genetic divergence and island biogeography in a coastal marine species

Author:

Hirschfeld MaximilianORCID,Barnett AdamORCID,Sheaves MarcusORCID,Dudgeon Christine

Abstract

AbstractOceanic islands play a central role in the study of evolution and island biogeography. The Galapagos Islands are one of the most studied oceanic archipelagos but research has almost exclusively focused on terrestrial organisms compared to marine species. Here we used the Galapagos bullhead shark (Heterodontus quoyi) and single nucleotide polymorphisms (SNPs) to examine evolutionary processes and their consequences for genetic divergence and island biogeography in a shallow-water marine species without larval dispersal. The sequential separation of individual islands from a central island cluster gradually established different ocean depths between islands that pose barriers to dispersal in H. quoyi. Isolation by resistance analysis suggested that ocean bathymetry and historical sea level fluctuations modified genetic connectivity. These processes resulted in at least three genetic clusters that exhibit low genetic diversity and effective population sizes that scale with island size and the level of geographic isolation. Our results exemplify that island formation and climatic cycles shape genetic divergence and biogeography of coastal marine organisms with limited dispersal comparable to terrestrial taxa. Because similar scenarios exist in oceanic islands around the globe our research provides a new perspective on marine evolution and biogeography with implications for the conservation of island biodiversity.

Funder

Rufford Foundation

Galapagos Conservation Trust

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3